

AUTOMATED CATALYST CHARACTERIZATION SYSTEM

micromeritics®

CALCULATIONS

Feb 2023 (Rev -)

CORPORATE PROFILE

Micromeritics Instrument Corporation is the world's leading supplier of high-performance systems to characterize particles, powders and porous materials with a focus on physical properties, chemical activity, and flow properties. Our technology portfolio includes: pycnometry, adsorption, dynamic chemisorption, particle size, intrusion porosimetry, powder rheology, and activity testing of catalysts. The company has R&D and manufacturing sites in the USA, UK, and Spain, and direct sales and service operations throughout the Americas, Europe, and Asia. Micromeritics systems are the instruments-of-choice in more than 10,000 laboratories of the world's most innovative companies and prestigious government and academic institutions. Our world-class scientists and responsive support teams enable customer success by applying Micromeritics technology to the most demanding applications. For more information, please visit www.Micromeritics.com.

PATENTS

For patent information, visit <u>www.Micromeritics.com/patents</u>.

CONTACT US

Micromeritics Instrument Corporation

4356 Communications Drive Norcross, GA 30093-2901 USA Phone: 1-770-662-3636 www.Micromeritics.com

Instrument Service or Repair

Phone: 1-770-662-3666 International: Contact your local distributor or call 1-770-662-3666 Service.Helpdesk@Micromeritics.com

Micromeritics Application Support

Support@Micromeritics.com

Table of Contents

Constants	_ 1
Active Metal Surface Area	2
BET Surface Area	3
BET Specific Surface Area	4
BET C Value	4
Volume of monolayer per gram	4
Single Experiment	5
Error of the BET Surface Area per gram:	5
Calibration Error (Goodness of Fit)	6
Cross-Sectional Area	_ 7
Crystallite Size	8
First Order Kinetics for TCD	9
Fit Peaks Curve Shapes	_10
Gaussian	10
Lorentzian	10
Pearson VII	10
Pseudo-Voigt	10
Log-normal with three parameters	11
Log-normal with four parameters	11
Gram Molecular Weight	_12
Injection Loop Calibration	_13
Metal Density	_14

Peak Area to Quantity of Gas	_15
Integrated Peak Area	15
Percent Dispersion	_16
Quantity at STP	_17
Quantity Adsorbed	_18
Stoichiometry Factor for Chemical Adsorption	_19
Vapor Generator	_20

CONSTANTS

Symbol	Values and Units	Description
$V_{ m ideal}$	$22414{ m cm}^3{ m at}~{ m STP}$	Ideal gas molar volume at STP
N _A	$6.02214076 imes 10^{23}{ m mol}^{-1}$	Avogadro constant
R	$8.31446{ m J}\cdot{ m K}^{-1}{ m mol}^{-1}$	Ideal gas constant
$T_{ m std}$	$0^{\circ}\mathrm{C} = 273.15\mathrm{K}$	Standard temperature
$P_{ m std}$	$1\mathrm{atm}=760\mathrm{mmHg}$	Standard pressure

ACTIVE METAL SURFACE AREA

This equation calculates the effective surface area per gram of metal.

$$A_{ ext{metallic}} = rac{Q \cdot S_{ ext{calc}} \cdot N_A \cdot A_{ ext{calc}}}{m \cdot V_{ ext{ideal}}}$$

Parameter	Description	Units
$A_{ m metallic}$	Specific metal surface area	m^2/g
Q	Quantity adsorbed	${ m cm^3}~{ m at}~{ m STP}$
$S_{ m calc}$	Calculated stoichiometry factor	
$A_{ m calc}$	Cross-sectional area	\mathbf{m}^2
m	Sample mass	g

BET SURFACE AREA

For a blend of inert and active gases, we take P to be the fraction of the pressure attributed to the active gas, found by taking the product of the active gas concentration and the measured pressure. For a given experiment, the active gas concentration varies with time as more active gas is adsorbed onto the surface. By holding the pressure constant over the duration of the experiment and measuring the total active gas concentration at the center time for a given peak i, the active gas pressure P_i can be determined by multiplying by the total pressure measured at the start of the experiment. The relative pressure is then written as P_i/P_0 .¹

Parameter	Description
P_i	Fraction of the pressure from the active gas
P_0	Saturation pressure of the adsorbate
i	Peak index

The specific quantity adsorbed for a single peak Q_i is determined from the sum of individual peak volumes V_i of those that preceded it and the sample mass m.

$$Q_i = \sum_{j=1}^i V_j/m$$

Then the BET transformation *B* is given by:

$$B_i = rac{P_i/P_0}{(1-P_i/P_0)\,Q_i}$$

Parameter	Description	Units
B_i	BET transformation	g/cm^3 at STP
Q_i	Quantity adsorbed	${ m cm^3/g}$ at STP
i	Peak index	

¹P.A. Webb, C. Orr, Analytical Methods in Fine Particle Technology [60-63], Micromeritics Instrument Corporation (1997)

A linear least squares fit is performed on the $(B_i P_i P_0)$ pairs where B_i is the dependent variable and $P_i P_0$ is the independent variable, from which we obtain the following:

Parameter	Description	Units
S	Slope	$ m g/cm^3 \ at \ STP$
Y	Y intercept	$ m g/cm^3 \ at \ STP$
σ_S	Error of the slope	$ m g/cm^3 \ at \ STP$
σ_Y	Error of the y-intercept	$ m g/cm^3 \ at \ STP$
	Correlation coefficient	

Using the results of the above calculations, the following are calculated:

BET SPECIFIC SURFACE AREA

$$A_{ ext{BET}} = rac{A_c N_A}{lpha V_{ ext{ideal}} \; (S+Y)}$$

Parameter	Description	Units
$A_{ m BET}$	BET specific surface area	m^2/g
A _c	Adsorbate molecular cross-sectional area	nm^2
$lpha=10^{18}$	Unit conversion factor	$\mathrm{nm^2/m^2}$

BET C VALUE

$$C = \frac{S+Y}{Y}$$

VOLUME OF MONOLAYER PER GRAM

$$V_m = rac{1}{CY} = rac{1}{S+Y}$$

Parameter	Description	Units
V_m	Volume of monolayer per gram	${ m cm^3/g}$ at STP

SINGLE EXPERIMENT

The calculation for a single experiment is obtained by linearly interpolating a line that passes through the collected data point and the origin. Setting the y-intercept to zero we obtain:

$$V_m = rac{1}{S} = rac{P_i/P_0}{B_i} = Q_i(1-P_i/P_0)$$

ERROR OF THE BET SURFACE AREA PER GRAM:

 $\sigma_{ ext{BET}} = rac{A_{ ext{BET}} \cdot \sqrt{\sigma_S^2 + \sigma_Y^2}}{Y + S}$

Parameter	Description	Units
$\sigma_{ m BET}$	Error of the BET specific surface area	m^2/g

CALIBRATION ERROR (GOODNESS OF FIT)

Let μ be the mean value of the measured quantities:

$$\mu = rac{1}{N} \sum_{i=0}^{N-1} Q_{m_i}$$

Then, the goodness of fit is given by r^2 :

$$r^2 = 1 - rac{\sum_{i=0}^{N-1} (Q_{m_i} - Q_{c_i})^2}{\sum_{i=0}^{N-1} (Q_{m_i} - \mu)^2}$$

Parameter	Description
r^2	Coefficient of determination
Q_{m_i}	Quantity measured for measurement i
Q_{c_i}	Quantity calculated for measurement i
i	Measurement index
N	Total number of measurements

CROSS-SECTIONAL AREA

 $A_{ ext{calc}} = G_{ ext{calc}} \sum_{i=0}^{N-1} rac{F_i \cdot A_i}{W_i}$

Parameter	Description	Units
$A_{ m calc}$	Calculated cross-sectional area	\mathbf{m}^2
F_i	Fraction of sample weight for metal i	
A_i	Cross-sectional area for metal i	\mathbf{m}^2
$\overline{W_i}$	Gram molecular weight for metal i	g/mol
i	Metal index	
N	Total number of metals	
$G_{ m calc}$	Calculated gram molecular weight	g/mol

CRYSTALLITE SIZE

This equation calculates the crystal size.

$$d=rac{k}{
ho A}, \hspace{0.5cm} ext{where}\hspace{0.5cm} k=egin{cases} 6 & ext{hemispheric} \ 5 & ext{cubic} \ 5 & ext{cubic} \end{cases}$$

Parameter	Description	Units
d	Crystallite size	m
ρ	Calculated metal density	g/m^3
A	Active specific surface area per gram of metal	m^2/g
k	Shape factor	

FIRST ORDER KINETICS FOR TCD

This series of steps calculates the first-order kinetics (heat of desorption). At least two experiments must be run — commonly three experiments are run. The ramp rate must be different for each run. The data are plotted and the slope determined.

The general equation is:

$$\ln\!\left(rac{eta}{T_p^2}
ight) = -rac{E_d}{RT_p} + \ln\!\left(rac{E_dQ}{RC}
ight)$$

Determine the slope *S* by plotting:

 $2\ln(T_p) - \ln(eta)_{\,_{
m VS}} 1/T_p$

Then determine E_d using:

 $E_d = S imes R$

Parameter	Description	Units
β	Ramp rate	K/min
E_d	Heat of desorption	$K \cdot J/mol$
T_p	Temperature at peak max	К
S	Slope	K
Q	The quantity adsorbed at saturation	cm ³ at STP
C	A constant related to the desorption rate	

FIT PEAKS CURVE SHAPES

Parameter	Description
a	Peak height at maximum amplitude
x > 0	Position
x_0	Peak position at maximum amplitude
$\sigma > 0$	Width parameter for peak functions
$\gamma > 0$	Log-normal shape factor
m	Pearson VII exponent
f	Blend fraction for pseudo-Voigt
x_L	Left x location of peak at half peak maximum
x_R	Right x location of peak at half peak maximum
$t(x)=rac{x-x_0}{\sigma}$	Transform function
$\omega = x_R - x_L$	Full peak width at half peak maximum height ($a/2$)

GAUSSIAN

 $y=a\,\mathrm{e}^{-t^2\ln{(2)}}$

LORENTZIAN

$$y = rac{a}{1+t^2}$$

PEARSON VII

$$y = rac{a}{\left[1 + t^2 (2^{1/m} - 1)
ight]^m}$$

PSEUDO-VOIGT

$$y = a[(1-f)\,{
m e}^{-t^2\ln(2)}+rac{f}{1+t^2}]$$

LOG-NORMAL WITH THREE PARAMETERS

 $y=a\,\mathrm{e}^{-rac{1}{2}eta^2}$, where $eta=rac{\ln(x/x_0)}{\sigma}$

LOG-NORMAL WITH FOUR PARAMETERS

Let:

$$f=rac{(x-x_0)(\gamma^2-1)}{\omega\,\gamma}$$

$$g=rac{\ln(2)~\ln(f+1)^2}{\ln(\gamma)^2}$$

Then:

$$y = egin{cases} a \, \mathrm{e}^{-g}, & \gamma
eq 1 \ a \, 2^{-4t^2} & \gamma = 1 ext{ and } \sigma = \gamma \end{cases}$$

GRAM MOLECULAR WEIGHT

The calculated Gram Molecular Weight is a weighted average of the number of moles of each active metal.

$$G_{ ext{calc}} = rac{1}{\sum_{i=0}^{N-1} F_i/W_i}$$

Parameter	Description	Units
$G_{ m calc}$	Calculated gram molecular weight	g/mol
F _i	Fraction of sample weight for metal i	
W _i	Gram molecular weight of metal i	g/mol
i	Metal index	
N	Total number of metals	

INJECTION LOOP CALIBRATION

These equations are used during a loop calibration to determine the gas capacity of the loop.

For each syringe injection:

$$Q_s = rac{V_s}{Z} imes \left(rac{P_a}{T_a}
ight) \left(rac{T_{
m std}}{P_{
m std}}
ight)$$

Parameter	Description	Units
Q_s	Syringe quantity	${ m cm^3}$ at STP
Vs	Physical injection volume	cm^3
Ta	Ambient temperature	K
Pa	Ambient pressure	mmHg
Z	Compressibility (of the loop gas)	

For loop injections, we take that the peak area of each injection will be linear with respect to the injection volume. Taking the slope of the line to be *S*, and the y-intercept to be *Y*, we obtain the loop quantity for each injection:

$Q_l = SA_l + Y$

We compute the average loop quantity \bar{Q}_l from these values. The loop volume is then given by:

$$V_l = ar{Q}_l Z\left(rac{T_a \cdot P_{ ext{std}}}{T_{ ext{std}} \cdot P_a}
ight)$$

Parameter	Description	Units
Vl	Effective loop volume (at loop temperature)	cm^3

METAL DENSITY

```
ho = G_{	ext{calc}} \sum_{i=0}^{N-1} rac{F_i \cdot 
ho_i}{W_i}
```

Parameter	Description	Units
ρ	Calculated metal density	g/cm^3
F_i	Fraction of sample weight for metal i	
$ ho_i$	Density of metal <i>i</i>	g/cm^3
Wi	Gram molecular weight for metal i	g/mol
i	Metal index	
N	Total number of metals	

PEAK AREA TO QUANTITY OF GAS

The quantity of gas for a given peak area and calibration is determined by:

$$Q_p = \sum_{i=0}^{M-1} A_p^i \omega_i$$

Parameter	Description	Units
Q_p	Quantity of gas	cm ³ at STP
A_p	Peak area	cm^3
M	Calibration polynomial degree	
i	Calibration polynomial coefficient index	
ω_i	Calibration polynomial coefficient	

INTEGRATED PEAK AREA

To compensate for the slope of the baseline ascribed to a given peak (S_{base}), we derive the equation for the baseline and subtract it from the measured TCD signal.

Since signal measurements are taken at constant intervals (Δt), let *k* and *j* represent the indices (in the signal's domain) of the first and last points for the baseline (respectively).

Then, the height of the baseline for an arbitrary data point *n* is given by:

$$b_n = S_{ ext{base}}(n-k) + b_k, \quad ext{where} \quad S_{ ext{base}} = rac{b_j - b_k}{j-k}.$$

The peak area is then found by numerical integration:

$$A_p = \sum_{n=k}^j (Y_n - b_n) \cdot \Delta t$$

Parameter	Description
Δt	Number of minutes per data point (inverse of sampling rate)
Y _n	TCD signal at point <i>n</i>
b _n	Baseline height at point $m{n}$
n	Data point index

PERCENT DISPERSION

The fractional coverage F_D used in reporting is derived as:

$$F_D = \left(rac{Q_s \cdot S_{ ext{calc}}}{V_{ ext{ideal}}}
ight) G_{ ext{calc}}$$

From this the percent dispersion P_D can be calculated by:

$$P_D = 100\% imes F_D$$

Parameter	Description	Units
P_D	Percent dispersion	%
F_D	Fractional coverage	
Q_s	Specific quantity adsorbed	cm^3/g at STP
$S_{ m calc}$	Calculated stoichiometry factor	

mi micromeritics[®]

QUANTITY AT STP

Gas quantity at standard temperature and pressure (STP) conditions.

$$Q_{ ext{STP}} = Q rac{T_{ ext{std}}}{T} rac{P}{P_{ ext{std}}}$$

Parameter	Description	Units
$Q_{ m STP}$	Quantity at standard temperature and pressure	$ m cm^3 \ at \ STP$
Q	Quantity at measured temperature and pres- sure	cm^3
T	Measured temperature of the gas	K
Р	Measured pressure of the gas	mmHg

QUANTITY ADSORBED

These equations are used for loop or syringe injections to calculate volume removed from the injections by the sample.

The general equation for the Quantity Sorbed Q_s is:

$$Q_s = \left(\sum_{i=0}^{N-1} Q_i
ight) - Q_{na}$$

Assuming the same quantities are used for each injection, we obtain:

$$Q_s = NQ_i - Q_{na}$$

This is often represented in calculations as Volume Sorbed V_s :

 $V_s = Q_s imes m$

Parameter	Description	Units
Q_s	Quantity sorbed	${ m cm^3/g}$ at STP
V_s	Volume sorbed	cm^3
i	Injection index	
N	Number of injections	
Q_i	Quantity per injection	${ m cm^3/g}$ at STP
Q_{na}	Total quantity not sorbed	${ m cm^3/g}$ at STP
m	Mass of sample	g

STOICHIOMETRY FACTOR FOR CHEMICAL ADSORPTION

 $S_{ ext{calc}} = G_{ ext{calc}} \sum_{i=0}^{N-1} rac{F_i \cdot S_i}{W_i}$

Parameter	Description	Units
$S_{ m calc}$	Calculated stoichiometry factor	
S_i	Stoichiometry factor for metal i	
F_i	Fraction of sample mass for metal i	
W_i	Gram molecular weight for metal $m{i}$	g/mol
i	Metal index	
Ν	Total number of metals	

VAPOR GENERATOR

The partial pressure of the vapor is estimated using the Antoine equation:

$$\log_{10}(P_v) = A - rac{B}{T_R+C}$$

Parameter	Description	Units
P_v	Partial pressure of vapor at reflux temperature	bar
A	Antoine coefficient A	bar
В	Antoine coefficient B	$\mathbf{K} \cdot \mathbf{bar}$
C	Antoine coefficient C	K
T_R	Reflux temperature	K

Pressures determined from the calculation above are converted internally, such that displayed units are in $\rm mmHg$.

Use the appropriate format of the Antoine equation as given by R. Reid¹ or J. Dean.² Some authors prefer to use temperature in Celsius rather than Kelvin and, similarly, $\ln(P_v)$ rather than $\log_{10}(P_v)$.

The fraction of vapor can then be calculated using:

$$y_v = rac{P_v}{P_{
m std}}$$

Parameter	Description
y_v	Fraction of vapor at reflux temperature

²J. Dean, Lange's Handbook of Chemistry, McGraw-Hill (1999)

¹R. Reid et.al., The Properties of Gases and Liquids, McGraw-Hill (1987)

mi micromeritics[®]

The volume of vapor for each peak in the vapor calibration is determined from:

$$V_v = y_v \cdot V_l \cdot rac{T_{ ext{std}}}{T_l}$$

Parameter	Description	Units
V_v	Vapor volume as a function of reflux tem- perature	cm ³
Vl	Loop volume	$ m cm^3 \ at \ STP$
T_l	Loop temperature (instrument default $383.15K$)	K

This page intentionally left blank