Instrucciones de descarga

  1. Descargue el paquete de modelos.
  2. Copie los modelos en el directorio de modelos de Micromeritics que corresponda.
  3. Reinicie la aplicación de Micromeritics.
Descarga de modelos de la DFT/NLDFT (no local)

 

Download DFT Models

Descarga de modelos de la DFT/DFT no local

Model References

Referencias de los modelos

Referencias de los modelos de la DFT 

[1] P. Tarazona. Free-energy density functional for hard spheres. Phys. Rev. A, 31(4):2672–2679, abril de 1985. 

[2] P. Tarazona, U. Marini Bettolo Marconi y R. Evans. Phase equilibria of fluid interfaces and confined fluids – non-local versus local density functionals. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 60(3):573–595, 1987. 

[3] Christian Lastoskie, Keith E. Gubbins y Nicholas Quirke. Pore size distribution analysis of microporous carbons: a density functional theory approach. The Journal of Physical Chemistry, 97(18):4786–4796, mayo de 1993. 

[4] P. Tarazona. A density functional theory of melting. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 52(1):81–96, 1984. 

[5] James P. Olivier. Modeling physical adsorption on porous and nonporous solids using density functional theory.Journal of Porous Materials, 2(1):9–17, julio de 1995. 

[6] James P. Olivier. Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data. Carbon, 36(10):1469–1472, octubre de 1998. 

[7] M. W. Maddox, J. P. Olivier y K. E. Gubbins. Characterization of mcm-41 using molecular simulation: Heterogeneity effects.Langmuir, 13(6):1737–1745, marzo de 1997. 

[8] M. Jaroniec, M. Kruk, J.P. Olivier y S. Koch. A new method for the accurate pore size analysis of mcm -41 and other silica based mesoporous materials. In Unger K.K., Kreysa G. y J. P. Baselt, editors, Proceedings of the Fifth International Symposium on the Characterization of Porous Solids, COPS-V, volume 128 of Studies in Surface Science and Catalysis, página 71. Elsevier, 2000. 

[9] James P. Olivier y Mario L. Occelli. Surface area and microporosity of a pillared interlayered clay (pilc) from a hybrid density functional theory (dft) method. The Journal of Physical Chemistry B, 105(22):5358–5358, mayo de 2001. 

[10] M. L. Occelli, J. P. Olivier, J. A. Perdigon-Melon y A. Auroux. Surface area, pore volume distribution, and acidity in mesoporous expanded clay catalysts from hybrid density functional theory (dft) and adsorption microcalorimetry methods.Langmuir, 18(25):9816–9823, noviembre de 2002. 

[11] Mario L. Occelli, James P. Olivier, Alice Petre y Aline Auroux. Determination of pore size distribution, surface area, and acidity in fluid cracking catalysts (fccs) from nonlocal density functional theoretical models of adsorption and from microcalorimetry methods. The Journal of Physical Chemistry B, 107(17):4128–4136, abril de 2003. 

[12] M. L. Occelli, J. P. Olivier, A. Auroux, M. Kalwei y H. Eckert. Basicity and porosity of a calcined hydrotalcite-type material from nitrogen porosimetry and adsorption microcalorimetry methods.Chemistry of Materials, 15(22):4231–4238, octubre de 2003. 

[13] Jacek Jagiello y James P. Olivier. A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. The Journal of Physical Chemistry C, 113(45):19382–19385, octubre de 2009. 

 

[14] J. Jagiello y J. P. Olivier, 2D-NLDFT Adsorption Models for Carbon Slit-Shaped Pores with Surface Energetical Heterogeneity and Geometrical Corrugation. Carbon (2013) 55, 70-80. 

[15] J. Jagiello, J. Kenvin, J. Olivier, A. Lupini, C. Contescu, Using a new finite slit pore model for NLDFT analysis of carbon pore structure, Adsorption Science & Technology 29 (2011) 769-780. 

[16] J. Jagiello, J.P. Olivier, Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation, Adsorption 19 (2013) 777-783 

[17J. Jagiello, J. Kenvin, Consistency of Carbon Nanopore Characteristics Derived from Adsorption of Simple Gases and 2D-NLDFT Models. Advantages of Using Adsorption Isotherms of Oxygen (O2) at 77 K, Journal of Colloid and Interface Science 542 (2019) 151-158. 

[18] J. Jagiello, C. Ania, J.B. Parra, C. Cook, Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2, Carbon 91 (2015) 330-337. 

[19] J. Jagiello, J. Kenvin, C.O. Ania, J.B. Parra, A. Celzard, V. Fierro, Exploiting the adsorption of simple gases O2 and H2 with minimal quadrupole moments for the dual gas characterization of nanoporous carbons using 2D-NLDFT models, Carbon 160 (2020) 164-175. 

[20] J. Jagiello, J. Kenvin, A. Celzard, V. Fierro, Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models, Carbon 144 (2019) 206-215. 

[21] J. Jagiello, T. Kyotani, H. Nishihara, Development of a simple NLDFT model for the analysis of adsorption isotherms on zeolite templated carbon (ZTC), Carbon 169 (2020) 205-213. 

[22P. Li, Q. Chen, T.C. Wang, N.A. Vermeulen, B.L. Mehdi, A. Dohnalkova, N.D. Browning, D. Shen, R. Anderson, D.A. Gómez-Gualdrón, F.M. Cetin, J. Jagiello, A.M. Asiri, J.F. Stoddart, O.K. FarhaHierarchically Engineered Mesoporous Metal-Organic Frameworks toward Cell-free Immobilized Enzyme SystemsChem (2018) 4, 1022-1034. 

[23J. Jagiello, M. Jaroniec, 2D-NLDFT Adsorption Models for Porous Oxides with Corrugated Cylindrical Pores, Journal of Colloid and Interface Science 532 (2018) 588-597.