SediGraph III Plus V2.0 Software Download
„*“ zeigt erforderliche Felder an
DFT-Modellreferenzen
Das nachstehende Quellenverzeichnis gehört zu den Quellenvermerken in der NLDFT-Modelltabelle.
Das DFT-Bibliographie verzeichnis besteht aus diesen und anderen Arbeiten, in denen die DFT zur Gewinnung von Daten aus der Adsorptionsisotherme dient.
Quellen (aus der NLDFT-Modelltabelle)
[1] Jacek Jagiello und James P. Olivier. A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. The Journal of Physical Chemistry C, 113(45):19382–19385, Okt. 2009.
[2] P. Tarazona. Free-energy density functional for hard spheres. Phys. Rev. A, 31(4):2672–2679, Apr. 1985.
[3] P. Tarazona, U. Marini Bettolo Marconi, und R. Evans. Phase equilibria of fluid interfaces and confined fluids – non-local versus local density functionals. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 60(3):573–595, 1987.
[4] Christian Lastoskie, Keith E. Gubbins, and Nicholas Quirke. Pore size distribution analysis of microporous carbons: a density functional theory approach. The Journal of Physical Chemistry, 97(18):4786–4796, Mai 1993.
[5] P. Tarazona. A density functional theory of melting.Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 52(1):81–96, 1984.
[6] James P. Olivier. Modeling physical adsorption on porous and nonporous solids using density functional theory.Journal of Porous Materials, 2(1):9–17, Juli 1995.
[7] James P. Olivier. Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data. Carbon, 36(10):1469–1472, Oktober 1998.
[8] M. W. Maddox, J. P. Olivier und K. E. Gubbins. Characterization of mcm-41 using molecular simulation: Heterogeneity effects.Langmuir, 13(6):1737–1745, März 1997.
[9] M. Jaroniec, M. Kruk, J.P. Olivier und S. Koch. A new method for the accurate pore size analysis of mcm -41 and other silica based mesoporous materials. In Unger K.K., Kreysa G. und J. P. Baselt, Herausgeber, Proceedings of the Fifth International Symposium on the Characterization of Porous Solids, COPS-V, Band 128 von Studies in Surface Science and Catalysis, Seite 71. Elsevier, 2000.
[10]James P. Olivier und Mario L. Occelli. Surface area and microporosity of a pillared interlayered clay (pilc) from a hybrid density functional theory (dft) method. The Journal of Physical Chemistry B, 105(22):5358–5358, Mai 2001.
[11]M. L. Occelli, J. P. Olivier, J. A. Perdigon-Melon und A. Auroux. Surface area, pore volume distribution, and acidity in mesoporous expanded clay catalysts from hybrid density functional theory (dft) and adsorption microcalorimetry methods.Langmuir, 18(25):9816–9823, Nov. 2002.
[12]Mario L. Occelli, James P. Olivier, Alice Petre und Aline Auroux. Determination of pore size distribution, surface area, and acidity in fluid cracking catalysts (fccs) from nonlocal density functional theoretical models of adsorption and from microcalorimetry methods.The Journal of Physical Chemistry B, 107(17):4128–4136, Apr. 2003.
[13]M. L. Occelli, J. P. Olivier, A. Auroux, M. Kalwei und H. Eckert. Basicity and porosity of a calcined hydrotalcite-type material from nitrogen porosimetry and adsorption microcalorimetry methods.Chemistry of Materials, 15(22):4231–4238, Okt. 2003.
Nach Modellnr.
[255]
[410, 420]
[600]
[610]
„*“ zeigt erforderliche Felder an