Currently Available DFT / NLDFT Models

Micromeritics is proud to begin the release of a new series of NLDFT models for the characterization of porous carbons. These new models are based upon the leading work of Jacek Jagiello and James Olivier and employ NLDFT techniques for 2-D finite geometry of pores to calculate the pore size distribution of materials from adsorption isotherms. This new technique was first published in the Journal of Physical Chemistry for nitrogen on carbon.

DFT/NLDFT Models

DFT Model NumberDFT Model Description
mod001.df2 Ar@87-Carbon, Slit pores, Original DFT
mod000.df2 N2@77-Carbon, Slit pores, Original DFT
mod003.df2 N2 - Modified Density Functional
mod010.df2 N2@77-Oxide Cyl Pores, Strong Potential
mod011.df2 CO2 @ 273 on Carbon, Slit Pores
mod012.df2 AR - Modified Density Functional
mod013.df2 N2@77-Oxide Cylindrical Pores,Tarazona
mod014.df2 N2@77 Cyl Pores in Pillared Clay, NLDFT
mod015.df2 Ar@87 in Oxide Cyl Pores, NLDFT
mod023.df2 Ar@77 on Carbon Slit Pores by NLDFT
mod024.df2N2@87 on Carbon Slit Pores by NLDFT
mod102.df2 Ar@77 on Zeolite Cyl Pores, NLDFT
mod200.df3 N2 @ 77 on Carbon Slit Pores by NLDFT
mod201.df2 N2@77-Carb Finite Pores, As=4, 2D-NLDFT
mod202.df2 N2@77-Carb Finite Pores, As=6, 2D-NLDFT
mod203.df2 Ar@87 on Carbon Slit Pores by NLDFT
mod204.df2 Ar@87-Carb Finite Pores, As=4, 2D-NLDFT
mod205.df2 Ar@87-Carb Finite Pores, As=6, 2D-NLDFT
mod206.df2 N2@77-Carb Finite Pores, As12, 2D-NLDFT
mod207.df2 Ar@87-Carb Finite Pores,As=12, 2D-NLDFT
mod225.df2 N2@77-Carb Cyl Pores, SWNT, NLDFT
mod226.df2 N2@77-Carb Cyl Pores, MWNT, NLDFT
mod227.df2 Ar@87-Carb Cyl Pores, SWNT, NLDFT
mod228.df2 Ar@87-Carb Cyl Pores, MWNT, NLDFT
mod229.df2 Ar@77-Zeolites, H-Form, NLDFT
mod230.df2 Ar@77-Zeolites, Me-Form, NLDFT
mod241.df2 GCMC CO2 Carbon slit
mod250.df2 CO2@273-Carbon Slit Pores, 10 atm,NLDFT
mod251.df2 Ar@87-Zeolites, H-Form, NLDFT
mod252.df2 Ar@87-Zeolites, Me-Form, NLDFT
mod255.df2 HS-2D-NLDFT, Carbon, N2, 77
mod400.df3 CO2@273-Carbon, NLDFT
mod410.df2HS-2D-NLDFT, Carbon, O2, 77
mod420.df2HS-2D-NLDFT, Carbon, Ar, 87
mod425.df2 HS-2D-NLDFT, Carbon, CO2, 273
mod430.df2HS-2D-NLDFT, Carbon, H2, 77
mod440.df2 HS-2D-NLDFT, Carb Cyl Pores (ZTC) N2@77
mod450.df2HS-2D-NLDFT, Carb Cyl Mesopores, N2@77
mod600.df2 MOF1-Ar Cylindrical Mesopores, 2D-NLDFT
mod610.df2 HS-2D-NLDFT, Cylindrical Oxide, Ar, 87
mod300.df2 NLDFT, Ultramicroporous Zeolites, O2, 77
mod300.df3NLDFT, Ultramicroporous Zeolites, O2, 77
mod300.df3NLDFT, Ultramicroporous Zeolites, O2, 77
mod310.df2NLDFT, Ultramicroporous Zeolites, H2, 77
mod310.df3 NLDFT, Ultramicroporous Zeolites, H2, 77

Model References

  1. P. Tarazona. Free-energy density functional for hard spheres. Phys. Rev. A, 31(4):2672–2679, Apr 1985.
  2. P. Tarazona, U. Marini Bettolo Marconi, and R. Evans. Phase equilibria of fluid interfaces and confined fluids – non-local versus local density functionals. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 60(3):573–595, 1987.
  3. Christian Lastoskie, Keith E. Gubbins, and Nicholas Quirke. Pore size distribution analysis of microporous carbons: a density functional theory approach. The Journal of Physical Chemistry, 97(18):4786–4796, May 1993.
  4. P. Tarazona. A density functional theory of melting. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 52(1):81–96, 1984.
  5. James P. Olivier. Modeling physical adsorption on porous and nonporous solids using density functional theory.Journal of Porous Materials, 2(1):9–17, July 1995.
  6. James P. Olivier. Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data. Carbon, 36(10):1469–1472, October 1998.
  7. M. W. Maddox, J. P. Olivier, and K. E. Gubbins. Characterization of mcm-41 using molecular simulation: Heterogeneity effects.Langmuir, 13(6):1737–1745, Mar 1997.
  8. M. Jaroniec, M. Kruk, J.P. Olivier, and S. Koch. A new method for the accurate pore size analysis of mcm -41 and other silica based mesoporous materials. In Unger K.K., Kreysa G., and J. P. Baselt, editors, Proceedings of the Fifth International Symposium on the Characterization of Porous Solids, COPS-V, volume 128 of Studies in Surface Science and Catalysis, page 71. Elsevier, 2000.
  9. James P. Olivier and Mario L. Occelli. Surface area and microporosity of a pillared interlayered clay (pilc) from a hybrid density functional theory (dft) method. The Journal of Physical Chemistry B, 105(22):5358–5358, May 2001.
  10. M. L. Occelli, J. P. Olivier, J. A. Perdigon-Melon, and A. Auroux. Surface area, pore volume distribution, and acidity in mesoporous expanded clay catalysts from hybrid density functional theory (dft) and adsorption microcalorimetry methods.Langmuir, 18(25):9816–9823, Nov 2002.
  11. Mario L. Occelli, James P. Olivier, Alice Petre, and Aline Auroux. Determination of pore size distribution, surface area, and acidity in fluid cracking catalysts (fccs) from nonlocal density functional theoretical models of adsorption and from microcalorimetry methods. The Journal of Physical Chemistry B, 107(17):4128–4136, Apr 2003.
  12. M. L. Occelli, J. P. Olivier, A. Auroux, M. Kalwei, and H. Eckert. Basicity and porosity of a calcined hydrotalcite-type material from nitrogen porosimetry and adsorption microcalorimetry methods.Chemistry of Materials, 15(22):4231–4238, Oct 2003.
  13. Jacek Jagiello and James P. Olivier. A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. The Journal of Physical Chemistry C, 113(45):19382–19385, Oct 2009.
  14. J. Jagiello and J. P. Olivier, 2D-NLDFT Adsorption Models for Carbon Slit-Shaped Pores with Surface Energetical Heterogeneity and Geometrical Corrugation. Carbon (2013) 55, 70-80.
  15. J. Jagiello, J. Kenvin, J. Olivier, A. Lupini, C. Contescu, Using a new finite slit pore model for NLDFT analysis of carbon pore structure, Adsorption Science & Technology 29 (2011) 769-780.
  16. J. Jagiello, J.P. Olivier, Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation, Adsorption 19 (2013) 777-783
  17. J. Jagiello, J. Kenvin, Consistency of Carbon Nanopore Characteristics Derived from Adsorption of Simple Gases and 2D-NLDFT Models. Advantages of Using Adsorption Isotherms of Oxygen (O2) at 77 K, Journal of Colloid and Interface Science 542 (2019) 151-158.
  18. J. Jagiello, C. Ania, J.B. Parra, C. Cook, Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2, Carbon 91 (2015) 330-337.
  19. J. Jagiello, J. Kenvin, C.O. Ania, J.B. Parra, A. Celzard, V. Fierro, Exploiting the adsorption of simple gases O2 and H2 with minimal quadrupole moments for the dual gas characterization of nanoporous carbons using 2D-NLDFT models, Carbon 160 (2020) 164-175.
  20. J. Jagiello, J. Kenvin, A. Celzard, V. Fierro, Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models, Carbon 144 (2019) 206-215.
  21. J. Jagiello, T. Kyotani, H. Nishihara, Development of a simple NLDFT model for the analysis of adsorption isotherms on zeolite templated carbon (ZTC), Carbon 169 (2020) 205-213.
  22. P. Li, Q. Chen, T.C. Wang, N.A. Vermeulen, B.L. Mehdi, A. Dohnalkova, N.D. Browning, D. Shen, R. Anderson, D.A. Gómez-Gualdrón, F.M. Cetin, J. Jagiello, A.M. Asiri, J.F. Stoddart, O.K. Farha, Hierarchically Engineered Mesoporous Metal-Organic Frameworks toward Cell-free Immobilized Enzyme Systems, Chem (2018) 4, 1022-1034.
  23. J. Jagiello, M. Jaroniec, 2D-NLDFT Adsorption Models for Porous Oxides with Corrugated Cylindrical Pores, Journal of Colloid and Interface Science 532 (2018) 588-597.